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Abstract—We present newly added modules for our au-
tonomous load handling system. The stereo camera system
provides information about the scene in front of the automated
forklift. A new alternative module for pallet detection is described.
Several processing modules for unloading operations are also
presented. Our system is evaluated by means of detection rate
and by performing field tests. The tests show that it is capable of
providing a sufficiently accurate position of the pallets in order to
perform loading and unloading operations in multiple scenarios.

I. INTRODUCTION

In this paper we present stereo-vision-based solutions for
autonomous load handling operations. We expand on previous
work by adding new modules for several unloading tasks.
Autonomous Guided Vehicles (AGVs) must perform pallet
loading and unloading operations without manual intervention.
Since the localization of the AGVs inside the warehouse is
limited in precision, slight missalignments might appear when
approaching the pallet.

The role of the vision system is to identify the pallet or the
empty space designated for unloading in order to help correct
the approach of the AGV. A stereo camera system can estimate
the relative distance of objects from the common field of view.
The system must be able to provide the position of the pallet
with an accuracy of 1 cm and the orientation of the pallet with
1 degree accuracy.

The work presented here is part of the PAN-Robots project
[1] whose aim is to create an automated logistics environment.
Installation and maintenance of such an environment is costly
and time consuming. Thus, one of the main goals of the project
is to ensure this with low installation time and costs.

The theoretical and practical contributions of this paper
include:

e the introduction of a new alternative pallet detection
module with aggregate features;

e the extension of our previous detection module with
new features and classifier types;

e development of solutions for unloading operations;
e introduction of validation modules;

e qualitative test results from executing real operations.

II. PREVIOUS WORK

Approaches for autonomous load handling use different
types of sensors for obtaining an understanding about the

environment. We will group these approaches into two main
categories: vision-based (monocular or stereo cameras) and 2D
or 3D time-of-flight Laser Range Finder (LRF). We start by
describing the approaches from the second category.

[2] presents a method for autonomous manipulation of a
priori unknown palletized cargo with a robotic lift truck. The
sensor involved in detection is a horizontal LIDAR. Operating
on the noisy points from the sensor an algorithm is applied to
perform closest edge detection.

Sky-Trax System offers a solution to detect the presence of
pallets on the forklift. The system uses an ultrasonic sensor that
uses sound waves to detect objects in its range. It has a broad
sensing area, is compact, durable, accurate, and inexpensive.
Pepplerl-Fuchs also offers ultrasonic sensors for solving the
same task.

SICK industries manufacture laser scanners for multiple
purposes. A paper from the National Institute of Standards
and Technology [3] presents a pallet detection method based
on LADAR (laser detection and ranging) using SICK S3000
laser scanners. This has the advantage over cameras that it
is able to operate in complete darkness and invariant lighting.
They also tackle unloading operation for trucks using the same
sensor. Hough transform [4], [5] is applied to detect lines that
represent walls and other boundaries from the gathered laser
points.

The system designed in [6] combines two sensors, a laser
scanner and a camera, to localize the pallet given some prior
knowledge with large uncertainty. The pallet is detected from
the color image acquired from the camera and the points from
the laser. The vision part uses edge template matching and
distance transform. Both sources must agree on the detection in
order for it to be considered valid. This approach suffers from
the disadvantages: the calibration between the laser scanner
and camera; edge information is not reliable; laser scanner
only offers information along scan lines. The authors have
evaluated their system on 300 examples with results indicating
a good localization precision. They have found difficulties due
to lighting conditions in 5 cases.

The paper from [7] describes a vision-based system func-
tioning outdoors consisting of an autonomous hot metal carrier.
The system from [8] uses easily identifiable features (land-
marks, fiducials) of the form of concentric circles for easy
registration. This however, requires the labeling of all pallets
with such features. The success rate they obtained from 100
operations is 98%. The work [9] makes use of corner features,
region growing and decision trees. Least squares line fitting
and a single camera is employed in [10]. Other approaches



include: [11] line-based model matching is used; [12] Colour-
based segmentation; [13] sheet-of-light range camera.

The detection module of our system relies on previous
advances in pedestrian detection such as Haar features and
fast boosted classifiers [14]; the usage of integral features [15];
HOG features [16]. Recent advances and surveys are presented
in [17].

Our previous work from [x] presented the system as a
whole including the requirements, software and hardware ar-
chitecture and initial tests. In this paper we describe the newly
added modules and improvements compared to the original
system.

III. PROPOSED IMPROVEMENTS

Several new modules have been added to our system and
many have been updated and improved.

A. Detection with aggregate features

A key element in a reliable system is to have alternatives
for each important module. We have decided to try a different
approach for pallet detection. Pallet detection is a subtask of
object detection. Relevant advances have been made in the
field of pedestrian detection with the sliding window approach.
A pictorial overview of the representative aggregate channel
features ACF method is shown in Figure 1.
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Fig. 1. Processing steps for detection based on aggregate channel features -
figure from [18]

In the following we describe a similar solution adapted for
the detection of pallets. In our experiments the pallets have a
fixed aspect ratio of 5 and height varying between 20 and 100
pixels. The region of interest for pallet detection has a size of
264 x 972 pixels. We use a single detection window having
a size of 24 x 120 pixels. This window includes also some
context (20 %) and corresponds to a pallet of 20 x 100 pixel
size.

For multiscale detection, we resize the image multiple
times and use the same detection window. We use a scale range
of 0.2 to 1.0 with scaling factor of 1.15. This way we are able
to detect pallets with heights between 20 and 100 pixels using
12 scales. At each scale we use a step of 2 pixels for sliding.
In order to classify the content of the sliding window we use a
boosting classifier based on aggregated channel features (ACF)
[18].

Eight image channels are computed from the input image
for generating classification features: grayscale, gradient mag-
nitude and oriented gradient magnitudes at six orientations (see
Figure 2). Instead of the LUV color channels we use the gray
level intensity. In [18] the channels were partitioned into 4 x 4
pixel aggregates. In our case we use smaller 2 x 2 aggregates
due to the smaller resolution of the pallet model. This way the
24 x 120 pixel size sliding window is represented by 8 x 12 x
60 aggregates. The aggregated channels obtained by computing

an average for each pixel aggregate and the classification
features become simple pixel lookups. For multiscale detection
the channels have to be recomputed for each individual scale.
Using an efficient CPU implementation, feature computation
for all 12 scales can be obtained at over 50 FPS.

Fig. 2. Sample pallet and visualization of certain features - a) grayscale; b)
gradient magnitude; ¢) gradient magnitude at orientation O degrees; d) gradient
magnitude at orientation 90 degrees.

For classification we train a boosting based classifier using
Adaboost with 2048 two level decision trees. We use the
training protocol with 3 bootstrapping rounds described in
[18]. This approach achieved outstanding detection accuracy
and precision rates on multiple challenging benchmarks and
handled well also difficult occlusion cases. The disadvantage of
the approach is that the localization is not very precise. Usually
multiple detections are obtained around an object and the non-
maximum suppression does not always retain the window that
is the best fit for the object.

B. Deeper trees

State-of-the-art pedestrian detection systems employ de-
cision trees that are limited to height 2. It has been shown
that this is a sweet spot that ensures the most accurate
detection. Here we test whether or not such an observation
holds for pallet detection. Aside from the fact that we detect
different types of objects our feature vector also has other
characteristics.

We operate with more descriptive features called normal-
ized pair differences (npd). These features were proposed
by us in a different work specifically for the task of pallet
detection. They represent intensity pair differences normalized
in such a way as to ensure certain illumination invariance
properties.

Decision trees with limited height/depth are usually a
compromise. It is often the case that leaf nodes contain a
mixture of positive and negative instances and thus the tree
must misclassify a certain percentage of the instances. By
enabling a larger depth one can expect to have a more powerful
classifier because of the increased possibility of branching
further.

C. Unloading operations for racks

Unloading operations require the target position for the
place of one or two pallets. We define the unloading cuboid
as the cuboid in 3D space which represents the empty area in
front of the AGV bounded by obstacles on the left and right
and the floor on the bottom. Our aim is to detect this unloading
cuboid. An error is signaled if for some reason the dimension



of the cuboid is smaller than the dimension of the pallets that
are to be unloaded.

Rack storage is comprised of poles holding up shelves at
different heights. We start by detecting the structure of the
rack. This can be obtained from the disparity map. The poles
and the support for the pallets must be at roughly the same
distance from camera because the approach of the AGV is
almost perpendicular to the rack. We extract the disparity
corresponding to the main fronto-parallel object from the
scene. We call this the principal disparity d*.

The principal disparity is taken to be the largest local max-
imum from the disparity histogram above a certain minimum
threshold value.

d* = arg max {h(d),d € N(d)} (1)
where h is the disparity histogram. This definition takes into
account the following considerations. It is a local maximum
because it must appear frequently in the image. It is the largest
local maximum because we want to consider the closest fronto-
parallel object. We must ensure that the disparity is higher
than a limit because we want to eliminate cases where the
background walls have a larger appearance frequency. This
limit is calculated from the maximal admissible distance to
the rack (around 3 meters).

Once the principal disparity is determined we filter the
disparity image and retain only the disparity values that are
close to the principal disparity and set to zero the rest of the
map. We then construct vertical and horizontal projections of
the non-zero elements.

D*(z,y) = abs(D(z,y) —d*) <5 )
D; =) D*(zy) A3)

y
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These projections provide us the necessary information to
delimit the free zone in front of the camera. Columns and
rows with high projection values in Dj and Dj respectively
mean the presence of the rack. We start from a point located
in the middle of the region of interest of coordinates (xg, yo)
and travel in three directions to find the left, right and bottom
limit to the open space available.

The coordinates of the left limit in pixel coordinates is
Ziepe and it is first value x left to xo for which the vertical
projection Dy (z) is above maz(h) x 0.8. The value of x.;4n:
is determined in the same manner in the other direction. For
Ybottomn We use the horizontal projection DZ(y).

The points (l‘leftaybottom) and ('rr'ighhybottom) can be
reconstructed using the principal disparity d* to obtain the
real world coordinates of the corners of the unloading cuboid:
(Xiefts Yiept, Ziest) and (Xpigne, Yright, Zrignt). The pallets
must be placed inside the cuboid on the level of Yj.z;. The
value of Y, ;4n; should be very close to Yi.f; otherwise we
signal an error. The pallets must be placed next to the closest

pole. This is the left pole if | Xjcs:| < |Xrignt| otherwise the
right pole. All the presented operations are illustrated in Figure
3 for a sample case.

Fig. 3. Unloading operation for rack - visualization of processing steps.
Top: disparity histogram and the limits of the unloading cuboid drawn on the

input image; bottom: disparity image with principal disparity highlighted, the
projections and the limits of the unloading cuboid are overlayed.

D. Block storage - ground level

It is required for scenarios where the unloading operation
takes place in a block storage on ground level to determine
the target position of the unloaded pallets based on markings
on the ground. We have developed a module that tackles this
specific task. The main tool employed in this process is the
Hough transform [4], [5] for finding the important lines in the
input image.

Since stereo reconstruction is not very reliable on the
floor region both images need to be processed in order to
have stereo information. We start by performing a standard
Hough transform for line detection. The input image is a
linear combination of the edge image and the original intensity
image. The importance given to the edge image is 0.95 while
for the intensity image it is 0.05. The reason for this is that
we want to detect bright lines only. The bin size for angles is
set to 1 degree. We locate the local maximum in the Hough
accumulator using a neighborhood of 5. The left line from the
floor marking is obtained by finding the line with the largest
angle € [50,70] degrees. We find the middle horizontal line
through the region of interest. This line must also lie close
to the middle of the region of interest. The position from the
top of the region of interest must be [90, 150]. The right line
from the floor marking is obtained by finding the line with the
largest angle € [290, 310] degrees.

After having the three main lines for the floor marking we
can extract the intersections. Name the intersection between the
left line and the middle line point A; for the left image and
the other intersection as point B; (see Figure 4). For the right
image we define A, and B, analogously. We can reconstruct
the 3D position of these points by using as the disparity values
the differences A; — A, and B; — B,.. Alternatively, we can
operate with the disparity values from the stereo matching
algorithm.

The position of the pallets can be found by knowing their
dimensions and placing them at a certain distance from each
floor marking. Note, that currently we are assuming that the
AGYV is roughly facing the floor markings and that the middle
line is approximately horizontal.



Fig. 4. Unloading operation ground level - edge map and the 50 most
important lines obtained via Hough transform in green. In blue are the lines
of the actual floor markings. Red crosses indicate the intersection points. The
edge image is noisy because of light reflections from the floor.

E. Block storage - stacking

For this case we use most of the ideas from the rack
case. However, the unloading cuboid must be on top of the
block storage. In this case we pick Zjc s and 2,445¢ differently.
Define .5, as first value x left to z¢ for which the vertical
projection Dj(x) is below maz(h) * 0.05. This ensures that
pallets are placed on top of the block storage. Figure 5 shows
a sample scenario for this type of operation.

Fig. 5. Unloading operation for block storage - visualization of processing
steps. Top: disparity histogram; limits of the unloading cuboid drawn on the
input image; bottom: disparity image with principal disparity highlighted, the
projections and the limits of the unloading cuboid.

IV. EXPERIMENTAL RESULTS

First, we define the overlap criteria that determines when
to consider a detection a correct match for a ground truth
bounding box. Let the rectangle A represent the predicted
pallet bounding box (rectangle) and let B represent the ground
truth hand labeled bounding box (rectangle). Let D represent
the union between A and B obtained by taking the union of the
intervals covered along = and y axis of the rectangles A and
B (see Figure 6). Let C be the intersection of the rectangles
A and B. We then define the absolute positioning error along
x E, and along y E,:

E, = D.width — C.width 5)
Ey = D.height — C.height (6)

If there is no overlap then E, = A.width + B.width and
the error term attains the maximum value. In case of a perfect
overlap the error is 0. We now define two separate criteria
for considering matches. We define a precise match exists
between A and B if £, < 15 and E, < 15. We define a
normal match exists between A and B if £, < 50 and I, <
50.

D.width

D.height A C.height

C.width

Fig. 6. Tllustration of definitions from the overlap criteria

We evaluate the detection accuracy of different approaches
for pallet detection. All classifier models are trained on the
Viano2 training set and evaluated on two different test sets:
test set Viano2 which is somewhat similar to the training set
having been acquired in the same recording session, also this
contains the highest number of annotated pallets; and test set
Viano3-5 originating from several separate recording sessions.
The second test set is more challenging and contains mostly
difficult cases including over/under-exposed images; heavy
glare; light artifacts. The composition of the sets is as follows:
the training set contains 467 images and 891 labeled pallets
(there can be zero or more than one pallet in each image); the
test set Viano2 contains 7124 images and 9047 labeled pallets;
test set Viano3-5 contains 467 images and 891 labeled pallets
224 and 356 labeled pallets.

We compare the newly introduced pallet detection module
with aggregate features to the previous approach. The results
with different detection module configurations are presented
in Table I. The previous method that uses boosted decision
trees and integral features is shown as baseline for comparison.
We also evaluate the influence of increasing the depth of the
decision tree and our newly introduced features normalized
pair differences (npd). According to the results increasing
the depth not only improves overall performance, it also
has a positive effect on the detection accuracy for precise
matches. This is essential for a more precise pallet localization.
Increasing the depth only slightly increases training time and
the execution speed for prediction.

Viano2 [ Viano3-5
Configuration | mormal | precise [ normal | precise
100 weak learners + 100 negatives
old features - depth 2 79.0 % 64.2 % - -
npd - depth 2 954 % | 914 % | 8716 % | 559 %
npd - depth 3 97.7% | 920% | 882 % | 688 %
npd - depth 4 983 % | 93.7% | 905 % | 722 %
npd - depth 5 983 % | 947 % | 938 % | 781 %
1000 weak learners + 1000 negatives
old features - depth 2 92.0 % 75.4 % 77.0 % 379 %
npd - depth 2 100 % 947 % | 938 % | 5713 %
npd - depth 5 989 % | 949 % | 975% | 649 %
2048 weak learners + 3 bootstrap rounds
aggregate features - depth 2 [ 994 % [ 463 % | 854 % [ 258 %

DETECTION ACCURACY ON TEST SETS VIANO2 AND
VIANO3-5

TABLE L

The newly added modules were tested in field during the
most recent test session named Viano6. Several operations
were performed using feedback from our system to correct
the AGV position and fork placements. Qualitative results are
presented in Table II where we count the number of operations
performed and the ratio of the successful operations. All tests



were successful, the single issue was that some parameters for
unloading cuboid detection needed to be tuned for the current
scenarios.

operation type nr. op. | nr. successful op. | percent
loading - rack 103 103 100 %
loading - block 69 69 100 %
unloading - rack 82 82 100 %
unloading - block 69 67 97 %
total 323 321 99 %

TABLE II. VIANOG FIELD TEST RESULTS

One of the main problems still present is the need for a
robust auto-exposure module. Illumination can change from
very dark - when there is a load on the forks - to very bright
- when light is reflected from the floor or when light comes
from behind the pallets. Another issue is the existence of minor
reconstruction errors from the stereo module that show up as
points placed very close to the camera. We have eliminated
these by considering only a limited range of disparities.

V. CONCLUSION

We have presented improvements and extensions for
a stereo-camera sensor system that is responsible for au-
tonomous load handling. The newly added functions tackle
unloading operations using scene understanding obtained from
the stereo disparity map.

Tests show that increasing the depth of the decision trees is
beneficial. It results in an increased detection rate and also an
improvement in localization. Field tests reveal that the system
is functional and the data sent to the AGV is precise enough
to perform loading and unloading operations automatically.

Of course increasing robustness and execution time is an
always present goal. For future work we plan to include
a glare removal function. Glare is present almost always
because of reflective plastic that covers the palletized goods.
A position validation module based on location priors is under
development. Also, a more sophisticated verification based on
pallet position configuration is planned.
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